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SUMMARY

This paper presents a new numerical method for solving the population balance equation using the
modi�ed method of characteristics. Aggregation and break-up are neglected but the density function
variations in the three-dimensional space and its dependence on the external �elds are accounted for.
The method is an interpretation of the Lagrangian approach. Based on a pre-speci�ed grid, it follows the
particles backward in time as opposed to forward in the case of traditional method of characteristics.
Unlike the direct marching method, the inverse marching method uses a �xed grid thus, making it
compatible with other numerical schemes (e.g. �nite-volume, �nite elements) that may be used to solve
other coupled equations such as the mass, momentum, and energy conservation equations. The numerical
solutions are compared with the exact analytical solutions for simple one-dimensional �ow cases. Very
good agreement between the numerical and the theoretical solutions has been obtained con�rming the
validity of the numerical procedure and the associated computer program. Copyright ? 2003 John Wiley
& Sons, Ltd.

KEY WORDS: population balance theory; method of characteristics; dispersed phases; particulate �ows;
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1. INTRODUCTION

Physical modelling of multidimensional particulate �ows has been the subject of intense re-
search over the last half century. The two-�uid model is often considered as the most sophisti-
cated multidimensional models available in the literature [1, 2]. In three-dimensional gas/liquid
�ows, the two-�uid model is comprised of 10 scalar partial di�erential equations, �ve scalar
algebraic interfacial jump conditions and eleven state variables. However, as reviewed by
Lahey and Drew [2] while the rigorous derivation of the two-�uid models has made signi�cant
progresses, ‘no model exists to date which is completely acceptable’. Moreover, mechanistic
interfacial and wall closure laws are still needed to accurately model three-dimensional two-
phase �ow [2]. More recently, Carrica et al. [3] have presented a three-dimensional com-
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putational model for two-phase �ow around a naval surface ship. The formulation is based
on a multidimensional two-�uid model [2] consisting of the continuity and the momentum
equations for both the gas and the liquid phases combined with the conservation equation for
the total number of bubbles. The numerical algorithm is based on a �nite-di�erence method
and can calculate the gas volume fraction and bubble radius and accounts for the coupling
between the gas and the liquid equations. However, it is limited to monodispersed bubble
population, i.e. all the bubbles at each location have the same radius. This was recognized as
an obvious limitation [2]. Such limitation could be overcome by solving the bubble population
balance equation for a polydisperse bubble density function.
Indeed, population balance o�ers a framework to solve various dispersed phase systems

with applications ranging from crystallization and �uidized bed reactors to microbial cultures
and aerosol reactors. As discussed in detail by Ramkrishna [4, 5], the particle population can
be described by a state vector de�ned in a so-called state space. The state space consists not
only of the physical space but also of an abstract ‘property’ space. In the physical space,
the state vector co-ordinates consist of the spatial co-ordinates [e.g. (x; y; z) in Cartesian co-
ordinates]. In the property space, the system is characterized by its property co-ordinates.
For example, each particle is characterized by its radius r and other properties denoted pi

such as gas molar fractions inside the bubbles in the case of gas=liquid �ows. The spatial and
property co-ordinates are also referred to as the external and internal co-ordinates, respectively.
Considering the particles transported by the liquid �ow and characterized by their radius r
and l other properties pi the state vector S can be expressed as S=[x; y; z; t; r; (pi)16i6l]. Let
f1 be the average number density function of particles=bubbles. The average number density
function f1[x; t; r; (pi)16i6l] is assumed to be su�ciently smooth to allow di�erentiation with
respect to any of its variables as many times as necessary [5]. Then, the population balance
equation can be expressed as [5]
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+
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(ubf1) +
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(vbf1) +
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@z
(wbf1) +
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@r
(ṙf1) +
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@
@pi

(ṗif1)= h (1)

where ub; vb and wb are the components of the particle velocity vector vb. The time rate of
change of the radius and of the other properties of the particles are denoted by ṙ and ṗi,
respectively. Finally, h= h(x; t; r; pi; Yi) represents the net rate of production of particles of a
particular state (x; r; (pi)16i6l) at time t.
Three levels of complexity arise in solving the population balance equation: (1) the source

and sink terms resulting from breakage and agglomeration and expressed as integral functions
in the population balance equation, (2) the variation of the density function in the multidi-
mensional space, and (3) the dependency of the density function on external variables Yi.
Reference is deliberately made to papers dealing only with density function depending on the
three dimensions and on external variables. The numerous publications in which spatial varia-
tion of the density functions was neglected by assuming perfectly mixed tank (e.g. References
[6–9]) are not discussed. However, the method can be extended to situations where the sink
and the source are present. In these cases, comparison with numerical solution is required but
falls beyond the scope of the present study.
Both analytical and numerical methods for solving the population balance equation have

been recently reviewed by Ramkrishna [5]. For the most practical problems, numerical meth-
ods are required if one wants to avoid simplistic assumptions. Discretization of the density
function combined with �nite di�erence method has been one of the most popular numerical

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1211–1236



MODIFIED METHOD OF CHARACTERISTICS FOR SOLVING PBE 1213

methods [5, 10–13]. It consists of discretizing the particle density function in the internal
space, thus forming groups of particles and solving the resulting equations for the total num-
ber of particles in each group by a �nite-di�erence method. Such a method has the advantage
of reducing computational times, a valuable feature in control and optimization of particulate
systems [5]. However, the discrete formulation has major drawbacks that have been discussed
extensively by Kumar and Ramkrishna [7, 9]. In brief, the discrete formulation lacks of in-
ternal consistency, i.e. some of the moments of the particle density function f1 cannot be
predicted accurately. For example, in gas=liquid �ows in which bubbles are characterized by
their radius r at time t, the mth sectional and total moments of the bubble density function
f1 in terms of bubble radius, denoted by �(i)m (x; t) and �m(x; t), respectively, are de�ned as

�(i)m (x; t)=
∫ ri+1

ri
rmf1(x; r; t) dr and �m(x; t)=

∫ rN

r0
rmf1(x; r; t) dr=

N−1∑
i=0

�(i)m (t) (2)

where r0 and rN are the minimum and maximum bubble radius. The total number of particles,
the average particle radius, the interfacial area concentration, the local volume fraction of the
dispersed phase are essential physically important moments of the particle density function
and correspond to zero, �rst, second and third order moments in terms of the particle radius,
respectively. For bubbles containing a single gas or a di�using and a non-di�using gas, the
bubble radius r is treated as the independent internal variable and N , Ai, fv and �r are de�ned,
respectively, as

zeroth moment N (x; y; z) =
∫ ∞

0
f1(x; y; z; r) dr (3)

First moment �r(x; y; z) =
[∫ ∞

0
rf1(x; y; z; r) dr

]/
N (x; y; z) (4)

Second moment Ai(x; y; z) =
∫ ∞

0
4�r2f1(x; y; z; r) dr (5)

Third moment fv(x; y; z) =
∫ ∞

0

4�r3

3
f1(x; y; z; r) dr (6)

Another important moment in gas=liquid �ows is the total mass of gas contained in the
bubbles de�ned as the third order moment in terms of variable 4�r3�g=3. In the discretization
technique, the calculation is designed for certain selected moments of the particle density
function rather than for an estimate of the particle density function accurate enough for esti-
mating all moments of the population [5]. In addition to the total number of particles=bubbles
for each discrete group, the discretized formulation for the second and third order moments
should also be solved if one wants to accurately predict (1) the interfacial mass and mo-
mentum transfer between the phases [1, 2], (2) the �ow regime often determined from the
void fraction and (3) the corresponding closure laws [1]. For example, Rousseaux et al. [12]
solved the coupled conservation equations for the total zeroth to fourth moments of the den-
sity function of pseudo-boehmite particles accounting for growth and precipitation in sliding
surface mixing devices. However, this approach does not provide detailed information about
the density function unless one assumes an arbitrary prespeci�ed form with four unknown
parameters such as the modi�ed Gamma distribution.
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The method of characteristics o�ers an alternative and more accurate method to discretiza-
tion method combined with �nite-di�erence methods. Instead of creating groups of particles=
bubbles, it solves directly for f1 and consists of transforming the partial di�erential population
balance equation into a system of ordinary di�erential equation which is then solved along the
pathline of the particles (characteristic curves). The conventional implementation (or direct
marching method) of the method of characteristics is based on the Lagrangian formulation:
the particles or the particle density function are identi�ed and located at initial time t= t0
and followed at subsequent time as the particles are transported. In three-dimensional �ows,
however, the deformation that the initial mesh undergoes as time progresses might lead to
deterioration of the numerical solution [14].
The modi�ed method of characteristics (or inverse marching method) is an intepretation

of the Lagrangian approach that overcomes the di�culties related to mesh deformation [14].
Based on a pre-speci�ed grid, it follows the particles backward in time as opposed to for-
ward, in the case of direct marching method. Unlike the direct marching method, the inverse
marching method uses a �xed grid that can be used for solving other transport equations
such as the continuity, momentum and energy equations by �nite-di�erence methods using
a staggered grid, as suggested by Patankar [15]. The advantages of the modi�ed method of
characteristics are the following:

• unlike �nite-di�erence methods in which the information propagates along co-ordinate
lines, the method of characteristics propagates the information along the pathlines and
thus matches the physics of the �ow resulting in extremely accurate numerical results
[16].

• it overcomes the numerical di�usion introduced by �nite-di�erence methods [15].
• it does not require any out�ow boundary conditions [17].
• Since the method uses a pre-speci�ed computational grid, it can easily account for the
coupling between the density function f1 and the external �elds such as the temperature,
velocity and concentrations which can be obtained by other numerical methods based on
an Eulerian �eld description (e.g. �nite volume method [15]).

• The modi�ed method of characteristics can be used for both transient and steady-state
calculations with great accuracy and without problems of numerical instability.

However, it possesses signi�cant, although not overwhelming, disadvantages [16]: (1) it is a
relatively complicated procedure, especially for more than three or four independent variables,
(2) the method is restricted to �ows and variables without discontinuities and (3) due to the
large amount of required interpolations and integration of the governing ordinary di�erential
equations, the computer programs may require long execution times.
The modi�ed method of characteristics has been successfully used for predicting high speed

three-dimensional single phase inviscid �ows in subsonic and supersonic propulsion noz-
zles [16–19] and combined with �nite elements method for solving unsteady incompressible
Navier–Stokes equations [14]. On the other hand, the conventional method of characteris-
tics for solving the population balance equation has been mainly used (1) for mathemati-
cal arguments to show the existence of solutions [5], (2) for obtaining analytical solutions
[5, 20–22] and (3) for obtaining numerical solution for two independent variables problems
[9]. However, to the best of our knowledge, no attempt has been made to solve the population
balance equation by the modi�ed method of characteristics. As computers become more pow-
erful and cheaper, the present approach favours accuracy and numerical stability over short
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computational time and algorithm simplicity. This paper presents a numerical implementation
of the modi�ed method of characteristics for solving the population balance equation in mul-
tiphase particulate systems that could be coupled to other numerical schemes for solving the
two-�uid model equations, or any other transport equations.

2. MODIFIED METHOD OF CHARACTERISTICS

The present study is concerned with solving the population balance equation for solid parti-
cle, gas bubbles, or solid droplets transported in three-dimensional �ow using the modi�ed
method of characteristics. A Cartesian co-ordinate system was employed in the analysis. The
formulation of the population balance equation is based on the following general assumptions
that hold for many di�erent multiphase particulate systems:

1. The particles are perfectly spherical in shape.
2. The e�ects of particles on the velocity and temperature �elds as well as on the thermo-
physical properties of the liquid phase are not considered.

3. Particle radius and local concentration are small.
4. The particles have negligible inertia (�b��∞). This hypothesis is reasonable since very
small particles are considered.

5. The liquid phase is incompressible.
6. Local thermal equilibrium exists between the gas and liquid phases, i.e. T∞=Tb=T .
7. Aggregation and break up of particles are not considered, i.e. the net production rate of
particles vanishes (h=0).

8. The components of the particle velocity vector, are taken to be the same as those of
the liquid phase v∞=(u∞; v∞; w∞), except in the vertical direction where the buoyancy
force has to be taken into account, i.e.

vb(r)= u∞i+ v∞j+ (w∞ + wr)k (7)

with wr being the upward particle velocity relative to the liquid phase due to the buoyancy
force and is assumed to follow Stokes’ law, i.e.

wr =
2
9

�∞gr2

�∞
(8)

Note that Equation (8) corresponds to the terminal (i.e. steady state) velocity of spherical
particles in Stokes’ �ow, i.e. the transient motion and inertia of particles have not been
considered for the sake of simplicity and since the formulation of transient forces is still
incomplete [23].

Based on the above assumptions, the population balance equation simpli�es to

@f1
@t
+

@
@x
(u∞f1) +

@
@y
(v∞f1) +

@
@z
[(w∞ + wr)f1]

+
@
@r
(ṙf1) +

l∑
i=1

@
@pi

(ṗif1)=0 (9)
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The method of characteristics consists of solving the population balance equation along
the pathline of the particles and transforms the governing partial di�erential equation into a
system of ordinary di�erential equations.
If we assume that the liquid phase can be treated as incompressible, the mass conservation

equation for the liquid phase can be expressed as [24]

∇ · v∞= @u∞
@x

+
@v∞
@y

+
@w∞
@z

=0 (10)

Expanding the partial derivatives on the left-hand side of Equation (1) and using Equation
(10) yields
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+ ṙ
@f1
@r

+
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]
(11)

By de�nition, the total time derivative of f1 =f1[x; y; z; t; r; (pi)16i6l] with respect to time t
can be written as

df1
dt
=

@f1
@t
+
dx
dt

@f1
@x

+
dy
dt

@f1
@y

+
dz
dt

@f1
@z

+
dr
dt

@f1
@r

+
l∑

i=1

dpi

dt
@f1
@pi

(12)

We further de�ne the characteristic curves in the particle state space as

dx
dt
= u∞(x; y; z) (13)

dy
dt
= v∞(x; y; z) (14)

dz
dt
= w∞(x; y; z) + wr(x; y; z; r) (15)

dr
dt
= ṙ[x; y; z; r; (pi)16i6l; (Yj)16j6l; t] (16)

dpi

dt
= ṗi[x; y; z; r; (pi)16i6l; (Yj)16j6l; t] for i=1; : : : ; l (17)

where (Yj)16j6l are the local continuous phase variables e.g. the gas concentration dissolved
in the liquid phase, the liquid temperature, or velocity. These variables are introduced to
consider the coupling between the density function f1 and the external �elds. Then, along the
characteristic curves in the [x; y; z; r; (pi)16i6l; t] space, the population balance equation can
be written as

Df1
Dt

=−f1

[
@wr

@z
+

@ṙ
@r
+

l∑
i=1

@ṗi

@pi

]
(18)

where Df1=Dt denotes the substantial derivative of f1, i.e. the total time derivative along
the pathline of the particle. The partial derivative of wr with respect to z is obtained from
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Equation (8) and is expressed as

@wr

@z
=

4�∞grṙ
9�∞(w∞ + wr)

(19)

Similarly, expressions for ṙ and ṗi and their derivatives with respect to r and pi, respectively,
can be obtained based on physical considerations of the speci�c process to be modelled.
In the method of characteristics, no boundary condition is required at the out�ow [17] while

the particle density function is speci�ed at the inlet boundary (x0; y0; z0)

f1(x0; y0; z0; t)=f1;0[r; (pi)16i6l; t] (20)

At the container wall=liquid interface the gradient of the particle density function f1 in the
normal direction vanishes,

∇nf1 = 0 at the liquid=walls interface (21)

Assumptions regarding the bubble velocity and neglect of the e�ects of particles on the
liquid phase �ow and temperature �elds are the most severe ones and their limitations will
be discussed later in this document. They have been used to decouple the conservation,
momentum and energy equations of the liquid and gas phases. This approach can be justi�ed
by the facts that particle radius and concentration are small and that the alternative approach
solving the coupled governing equations using the multidimensional two-�uid model lacks
mechanistic closure laws accounting, for example, for the interfacial mass and momentum
transfer [2].

3. NUMERICAL METHOD

In the present model, the liquid �ow is assumed not to be a�ected by the presence of particles;
therefore, the velocity and temperature �elds in the liquid phase are treated as �xed input
parameters. The system of equations for the velocity and temperature �elds are parabolic in
nature and can be discretized in space using a (l1×m1× n1) staggered grid for the scalar
and vector variables and can be solved, for example, by using the SIMPLER algorithm [15].
Indices i; j; k correspond to the vector grid points while indices I; J; K correspond to the scalar
grid points as illustrated in Figures 1 and 2 for two-dimensional geometry. Other external
variables related to the liquid phase, such as the dissolved gas concentrations, can be computed
in a similar manner.
The governing equations [Equations (13)–(21)] for the particle density function are solved

by the modi�ed method of characteristics [16, 18, 19]. Figure 3 shows a three-dimensional
computational cell whose corner points belong to the vector component grid. The modi�ed
method of characteristics consists of determining the co-ordinates (xn; yn; zn) of the point in
space from where the particles located at the grid point (xa; yb; zc) at time t + �t originate
from at time t. In other words, for each point of a speci�ed grid, the pathline is projected
rearward to the initial data surface to determine the initial data point. For example, in Figure 3
the point (xa; yb; zc) is the point (xi+1; yj+1; zk+1). The solid line represents the section of the
characteristic curve along which the particle traveled from location (xn; yn; zn) to location
(xa; yb; zc) during the time interval between t and t +�t.
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Figure 1. Schematic of a 8× 8 staggered grid in a two-dimensional repre-
sentative longitudinal plane (l1 =m1 = 8).
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Figure 2. De�nition of control volume in a two-dimensional representative longitudinal plane.

To avoid numerical instabilities, it is necessary to insure that the particles do not leave the
computational cell between the time t and t + �t. In other words, each computational cell
traveled by the particle should contain at least two consecutive points on the characteristic
curve. Therefore, the initial time step �t is determined by the equation,

�t= min
26i6l1−1
26j6m1−1
26k6n1−1

{∣∣∣∣ xi+1 − xi
2u∞(i; j; k)

∣∣∣∣ ;
∣∣∣∣ yj+1 − yj

2v∞(i; j; k)

∣∣∣∣ ;
∣∣∣∣ zk+1 − zk
2[w∞(i; j; k) + wr(i; j; k)]

∣∣∣∣
}

(22)
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Figure 3. Typical computational cell used for inverse marching
method containing the pathline of the bubbles.
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Boundary Conditions

Steady-State?Steady-State?
no

t=t+∆t

Choose r0, pi,0, and f1,0

at the inlet

yes

Figure 4. Block diagram of the numerical procedure for solving the population balance equation by the
method of characteristics using inverse marching method.

The factor 2 appearing in the denominator was arbitrarily introduced to assure that each
computational cell contains at least two consecutive points on the characteristics curve. A
larger value of the factor could have been chosen but was proven to have no signi�cant e�ect
on the �nal numerical results, while slowing down the convergence to steady-state. However,
when particles can grow, the particle radius and upward velocity can change making the
particles leave the computational cell after one time step. Then, the time step has to be
reduced in order to assure the stability requirement.
Figure 4 shows the general block diagram of the computational procedure in performing

a steady-state calculation for a given particle size distribution f1;0[r; (pi)16i6l; t] at the inlet
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Figure 5. Block diagram of the computation of the interior point for solving the population balance
equation by the method of characteristics using inverse marching method.

boundary. First, the variables across the computational domain are all initialized to an arbi-
trarily small value except at the inlet boundary where the variables r, (pi)16i6l and f1 are
set to be equal to r0, (p0;i)16i6l and f1;0, respectively. In other words, an arbitrary point
is selected on the initial particle density function f1;0[r; (pi)16i6l; t]. Then, the time step is
computed according to Equation (22). Finally, the ordinary di�erential equations for the vari-
ables r, (pi)16i6l and f1 [Equations (13)–(18)] are solved at all interior points and out�ow
boundaries, followed by the computation of the variables at the solid boundary points. The
solution of the governing ordinary di�erential equation at the interior points and speci�cation
of the variables at the boundaries is repeated until a steady state has been reached. The same
sequence takes place for another arbitrary point with co-ordinates [r′0; (p

′
0;i)16i6l] on the initial

particle density function f1;0 imposed at the inlet boundary.
The computational domain for solving the particle density function, the particle radius

and the other particle internal co-ordinates consists of four basic types of points (or nodes):
interior, solid boundary, inlet and exit points. The basic features of the interior point unit
process are presented in the following discussion followed by a brief description of the other
three unit processes.

3.1. Interior point unit process

Figure 5 shows the detailed numerical procedure used for solving the governing ordinary di�er-
ential equations [Equations (13)–(18)] at every interior point (xa; yb; zc) such that 26a6l1−1,
26b6m1 − 1 and 26c6n1 − 1 as well as at the outlet boundary.
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1. First, the co-ordinates (xn; yn; zn) are determined by assuming that the velocity component
(un; vn; wn) and the particle radius rn at location (xn; yn; zn) and time t are the same as
those at location (xa; yb; zc) at time t + �t, i.e. (un; vn; wn)= (u∞; v∞; w∞ + wr). Thus
solving Equations (13)–(15) yields

xn = xa − u∞(xa; yb; zc)�t (23)

yn = yb − v∞(xa; yb; zc)�t (24)

zn = zc − [w∞(xa; yb; zc) + wr(xa; yb; zc; r)]�t (25)

2. Second, let us call (xi; yj; zk) the closest point to (xn; yn; zn) in the vector grid such
that xi6xn6xi+1, yj6xn6yj+1, zk6xn6zk+1. Similarly, let us call (xI ; yJ ; zK) the closest
point to (xn; yn; zn) in the scalar grid such that xI6xn6xI+1, yJ6xn6yJ+1, zK6xn6zK+1.
Then, the computational cells containing the point (xn; yn; zn) in both the vector grid and
the scalar grid of the staggered grid system, i.e. i; j; k and I; J; K , are determined.

3. Third, the velocity components at (xn; yn; zn) are determined by Lagrangian interpola-
tion using their values at the eight corners of the computational cell in the vector grid
containing the point (xn; yn; zn),

�n = (1− �u)(1− �v)(1− �w)�i; j; k + �u(1− �v)(1− �w)�i+1; j; k

+(1− �u)�v(1− �w)�i; j+1; k + �u ×�v(1− �w)�i+1; j+1; k

+(1− �u)(1− �v)�w�i; j; k+1 + �u(1− �v)�w�i+1; j; k+1

+ (1− �u)�v ×�w ×�i; j+1; k+1 + �u ×�v ×�w ×�i+1; j+1; k+1 (26)

where the variable � corresponds to the liquid velocity components u∞, v∞ and w∞ and
�n is their interpolated value at location (xn; yn; zn), while �i; j; k is their known values at
the vector grid point (xi; yj; zk). The weights �u, �v and �w vary between zero and unity
and are de�ned as

�u=
(xn − xi)
(xi+1 − xi)

; �v=
(yn − yj)
(yj+1 − yj)

and �w=
(zn − zk)
(zk+1 − zk)

(27)

4. Similarly, the scalar variables  such as the temperature T , the radius of the particles r,
the internal co-ordinate (pi)16i6l and the thermophysical properties are interpolated at
location (xn; yn; zn) and time t using the equation

 n = (1− �x)(1− �y)(1− �z) I; J;K + �x(1− �y)(1− �z) I+1; J; K

+(1− �x)�y(1− �z) I; J+1; K + �x × �y(1− �z) I+1; J+1; K

+(1− �x)(1− �y)�z ×  I; J;K+1 + �x(1− �y)�z ×  I+1; J; K+1

+ (1− �x)�y × �z ×  I; J+1; K+1 + �x × �y × �z ×  I+1; J+1; K+1 (28)
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where the function  corresponds to scalar variables and  n is their extrapolated value
at location (xn; yn; zn) and time t from the knowledge of their values at the scalar grid
points (xI ; yJ ; zK). The weights �x, �y and �z vary between zero and unity and are de�ned
as

�x=
(xn − xI)
(xI+1 − xI)

; �y=
(yn − yJ )
(yJ+1 − yJ )

and �z=
(zn − zK)
(zK+1 − zK)

(29)

5. The co-ordinates (xn; yn; zn) of the particle at time t are recomputed using the interpolated
values of the liquid velocity components [obtained at Step 3], while the relative particle
velocity wr is computed from Equation (8) using the particle radius rn and the thermo-
physical properties of the liquid interpolated at location (xn; yn; zn) and time t [obtained
at Step 4],

xn = xa − u∞; n�t (30)

yn = yb − v∞; n�t (31)

zn = zc − (w∞; n + wr;n)�t (32)

with wr;n =
2
9

�∞gr2n
�∞; n

(33)

6. The ordinary di�erential equations for the particle internal co-ordinates [r; (pi)(16i6l)]
and for the density function f1 [Equations (16)–(18)] at location (xa; yb; zc) and time
t +�t can then be integrated by the fourth order Runge–Kutta method [25].

7. Steps 2–6 are repeated until the di�erence between two successive computed values of
xn, yn and zn is less than an arbitrary value �1, i.e.

Max[|xn(iter + 1)− xn(iter)|; |yn(iter + 1)− yn(iter)|; |zn(iter + 1)− zn(iter)|]6�1 (34)

where iter is the iteration step number. A sensitivity study has been performed and
showed that the numerical solution was independent of �1 provided that it is less than
1:0× 10−4 m.

8. Steps 1–7 are repeated for all interior points (xa; yb; zc).
9. For steady state calculations, steps 1–8 are repeated until the maximum relative di�erence
in the predictions of the particle internal co-ordinates [r; (pi)16i6l] and of the density
function f1 between two successive iterations fall under an arbitrary constant �2:

max
26i6l1−1
26j6m1−1
26k6n1−1

[ |X (iter + 1)− X (iter)|
X (iter)|

]
6�2 (35)

where X represents the internal co-ordinates r, (pi)16i6l and f1.
10. Steps 1–9 are repeated for all the points on the initial particle density function f1;0(r;

(pi)16i6l; t).
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3.2. Boundary point unit processes

The initial density function at the inlet boundary f1;0 is determined from physical consider-
ations or based on experimental data. The exit points are treated as interior points and the
same procedure as that previously described is followed. Finally, Dirichlet, Neuman or mixed
boundary conditions can be applied at the solid boundary points. In the present work, the
weak boundary conditions were assumed for r, f1 and pi at the walls.
The advantage of the proposed method is that even the most complicated problem may be

solved with relative ease. As the complexity of the problem increases, the complexity of the
formulation and the solution e�ort increase much more rapidly for conventional techniques.
Therefore, the modi�ed method of characteristics will be preferable for problems beyond a
certain complexity. For example, the present method is recommended for multidimensional
problems with complex �ow pattern where the density function depends on the external �elds.
In addition, the method is compatible and can be used in combination with other numerical
schemes (e.g. �nite-volume, �nite elements) that may be used to compute the external vari-
ables.

4. COMPUTER PROGRAM VALIDATION

A set of test problems was chosen in order to compare the numerical predictions against
practical problems whose analytical solutions are known and can be summarized as follows:

1. Solid particle in one-dimensional laminar �ow—transient and steady-state situations.
2. Bubble or droplet transport and growth in one-dimensional vertical laminar �ow.

In all the cases considered for validation, the liquid temperature, the liquid viscosity and
density are assumed to be uniform and constant with time over the entire computational
domain and the coupling between the particles and the external �elds is not accounted for,
i.e. the variables Yj are constant. Even though the �ow considered are one-dimensional (i.e.
u∞= v∞=0) the calculations were performed for a three-dimensional computational domain.
The container is taken to be a parallelepiped of height, length and width denoted by H , L
and W , respectively.

4.1. Solid particles in one-dimensional laminar �ow

For validation purposes, we consider the physical situation when monodispersed solid particles
of constant radius r are injected at the bottom of a vertical container. The liquid under one-
dimensional laminar �ow conditions with a uniform and constant upward velocity of 0:2m=s,
i.e. v∞=w∞k=0:2k, is considered. The particles are subject to buoyancy and are assumed
to be small and in low concentration so that their presence does not a�ect the liquid �ow.
Then, the population balance equation simpli�es to

@f1
@t
+ (w∞ + wr)

@f1
@z
=0 (36)

4.1.1. Transient situation. In this example, the particles are injected uniformly across the
bottom of the container (at z=0) and the injection rate varies with time so that the particle
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Figure 6. Comparison between the predictions of the method of characteristics and the analytical solution
for solid particle density function under one-dimensional transient �ow at time t=20:4 s.

density function at z=0 and time t is denoted F(t). In the present study we assume that
the particle density function at the bottom of the column varies with time according to the
following Fermi function,

f1(z=0; t)=F(t)=f0

[
ea(t−t0)

1 + ea(t−t0)

]
(37)

where a, t0 and f0 are arbitrary constants. Thus, the transient particle density function at time
t and location z solution of Equation (36) is given by

f1(z; t)=F(u) where u= t + z=(w∞ + wr) (38)

i.e.

f1(z; t)=

{
ea[t+z=(w∞+wr)−t0 ]

1− ea[t+z=(w∞+wr)−t0]

}
f0 (39)

The numerical calculations were performed with the particle radius and the �uid properties
such that the �uid �ow is laminar and that the particle upward velocity (w∞+wr) is equal to
4cm=s while the parameters at the particle injection cross-section (i.e. at z=0) are a=1:4s−1,
t0 = 2 s and f0 = 105=m3 of liquid=m. Figure 6 shows a comparison of the particle density
function using dimensionless variables along the z-axis at time t=20:4 s obtained numerically
with the exact solution. One can see that as the grid size is re�ned, the predictions of the
numerical model converge toward the exact solution [Equation (38)]. The rapid changes in
the particle injection rate with time forces one to reduce the grid size signi�cantly in order
to capture the sharp variation of the injection rate.
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Figure 7. Schematic of the two-dimensional computational domain used for simulating steady-state
transport of solid particles in two-dimensional laminar �ow.

4.1.2. Steady-state situation. Here, the particles are not injected uniformly at the bottom
of the container, instead the particle density function at z=0 varies in the x-direction, i.e.
f1(x; y; 0; r; t)=G(x) as illustrated in Figure 7. Then, under steady-state conditions, the particle
density function at any location z should be the same as that at the bottom of the container,
i.e.

f1(x; y; z; r)=G(x) (40)

Figure 8 illustrates a comparison of the numerical results with the analytical solution for
the particular example when

G(x)=
[

ea(x−x0)

1 + ea(x−x0)

]
f0 (41)

with the parameters a=1:5m−1, x0 = 0:7m and L=1m. The tank was discretized in Cartesian
co-ordinates using a 24× 15× 9 grid. All the particles were assumed to be 1 mm in radius.
Very good agreement exists between the numerical and the analytical solutions even with a
coarse grid.
A monodispersed particle distribution has been chosen for illustrative purposes but similar

results can be obtained for any arbitrary polydispersed population of solid particles. It su�ces
only to perform the same calculation for di�erent radii and the corresponding values of the
particle density function.
In conclusion, for solid particles transport in a one-dimensional vertical �ows, the numerical

scheme based on the modi�ed method of characteristics yields results which are in very good
agreement with theoretical solutions for both transient and steady-state conditions.

4.2. Bubbles rise at constant growth rate

This section is limited to bubble transport in steady-state one-dimensional laminar �ow with
constant particle growth rate ṙ as shown in Figure 9. The population balance equation to be
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k
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v = 2.0k∞
→→

Figure 9. Schematic of a rectangular vertical container used for the code validation.
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solved is written as

@
@z
[(w∞ + wr)f1] +

@
@r
(ṙf1)=0 (42)

where wr is given by Equation (8). The liquid upward velocity is assumed to be w∞=0:2m=s
and the growth rate is taken as constant and equal to ṙ= ṙ0 = 1:0× 10−5 m=s. The governing
equations to be solved simplify to

dz
dt
=w∞(z) + wr(r; z) (43)

dr
dt
= ṙ0 (44)

df1
dt
=−f1

@wr(r; z)
@z

(45)

The bubble density function at the injection cross-section z=0 is assumed to follow a normal
distribution, i.e.

f1(r; z=0; t)=
1

�0
√
2�
exp

[
− (r − �0)2

2�20

]
(46)

with a mean value �0 = 1 mm and a deviation �0 = 0:25 mm.
In this speci�c case, an analytical solution to the population balance equation can be found

if one recognizes that the bubbles are small and their relative velocity with respect to the
liquid wr is negligible compared with the velocity of the liquid (wr�w∞). In other words,
the bubble density function f1(z; r) shifts toward larger r in the r-space when bubbles are
transported from location z=0 m to z=H m, i.e. a bubble entering the column at z=0 with
a radius r reaches the location z with a radius r+ ṙ0z=w∞. Then, the bubble density function
f1 at location z is given by

f1(z; r)=
1

�0
√
2�
exp

{
− [(r − ṙ0z=w∞)− �0]2

2�20

}
(47)

Figure 10 compares the bubble density function at locations z=0 m obtained numerically
with the analytical solution given by Equation (47). The results clearly indicate that the
numerical model agrees very well with the exact solution. Note also that extension of this
example to droplet transport and evaporation in one-dimensional gas �ow is straightforward.

4.3. Bubbles transport and growth due to pressure changes

In this section, the gas bubbles are transported with the upward �owing liquid and by buoyancy
while they can grow due the change in hydrostatic pressure as shown in Figure 9. The pressure
drop in the liquid phase is neglected and the pressure at z=0 m is assumed to equal the
atmospheric pressure p0. The following equations are to be solved by the modi�ed method
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Figure 10. Comparison between the numerical solution and the analytical solution for
bubble rise at constant growth rate (ṙ=0:01mm=s) under one-dimensional steady-state

�ow at z=4m with �0 = 1mm, �0 = 0:25mm, w∞=0:2km=s.

of characteristics,

dz
dt
=w∞(z) + wr(r; z) (48)

dr
dt
= ṙ(r; z) (49)

df1
dt
=−f1

[
@wr(r; z)

@z
+

@ṙ(r; z)
@r

]
(50)

where wr and its derivative with respect to z are given by Equations (8) and (19), respectively.
The bubble growth rate ṙ and its derivative with respect to bubble radius are expressed as

ṙ =
�∞g(w∞ + wr)r=3
p0 + �∞gz + 4�=3r

(51)

@ṙ
@r
=

�∞g
3

[
(w∞ + 3wr)

p0 + �∞gz + 4�=3r

]
+
4�
3r2

[
ṙ

p0 + �∞gz + 4�=3r

]
(52)

Here, the liquid density, viscosity and surface tension correspond to those of soda-lime silicate
glass at 1800K and are equal to 2406 kg=m3, 5:53 Pa s and 296mN=m, respectively. The initial
bubble density function is assumed to follow a normal distribution [Equation (46)] with a
mean value of �0 = 1 mm and a deviation �0 = 0:25 mm.
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4.3.1. Bubble rise dominated by the upward liquid �ow. In the present example, the relative
velocity of the bubble with respect to the liquid wr can be neglected compared with the
liquid velocity w∞. Its partial derivative with respect to z is also negligible in comparison
with that of ṙ with respect to the bubble radius r. Moreover, the term due to surface tension
in the denominator is assumed to be negligible, i.e. 4�=3r� (p0 +�∞gz). This assumption is
valid for bubble radii larger than 0:2mm. Note that, if the liquid �ows upward (w∞¿0), the
bubbles grow and the growth rate dr=dt is positive. The approximate solution to the problem
of interest can be written as

z(t) =w∞t (53)

r(t) = r0

(
p0 + �∞gz

p0

)1=3
(54)

f1(r) =f1(r0)
(r0
r

)
(55)

where r0 is the bubble radius at location z=0 m at time t=0 s. Note that the approximate
analytical solution satis�es the conservation of the same total number of bubbles N ,

N (z)=
∫ ∞

0
f1(r) dr=

∫ ∞

0
f1(r0)

r0
r
dr=

∫ ∞

0
f1(r0) dr0 =N (z=0) (56)

Figure 11 illustrates a comparison of the approximate analytical solution given by
Equation (55) with the numerical results for Equations (50)–(52). The numerical solutions
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Figure 11. Comparison between the method of characteristics and the approxi-
mate analytical solution for bubble rise and growth due to pressure change under
one-dimensional steady-state �ow with �0 = 1 mm, �0 = 0:25 mm, w∞=0:2k m=s.
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Figure 12. Comparison between the method of characteristics and the approximate
analytical solution [Equation (54)] for the pro�le of bubble radius r(z) as a function

of z with r0 = 2mm at z=0m and w∞=0:2km=s.

compare very well with the approximate analytical solution. The slight discrepancies may be
explained by the approximation made to solve the problem analytically that tend to underes-
timate the bubble growth. One can see that unlike the results for constant growth rate, the
bubble density function at the top of the column (z=4m) is not symmetric around the mean
value due to the fact that the growth rate increases linearly with the bubble radius as given
by Equation (51) when wr is negligible compared with w∞, i.e. the large bubbles grow faster
than the smaller ones. Finally, the variation of the bubble radius r(z) and the bubble density
function f1(r; z) with the vertical location z for an initial bubble radius r0 = 2mm at z=0m is
shown in Figures 12 and 13, respectively. Again, good agreement between the approximate
analytical and the numerical solution is observed.

4.3.2. Bubble rise dominated by buoyancy. Here, the gas bubbles rise by buoyancy only, i.e.
w∞=0m=s and can grow due the changes in the hydrostatic pressure. Similarly, assuming that
the term due to surface tension in the denominator is negligible compared with the hydrostatic
pressure, i.e. 4�=3r� (p0 + �∞gz), an analytical solution can be found for the radius r and
the bubble density function f1 at every location z in the column are given by

r(z) = r0

(
p0 + �∞gz

p0

)1=3
(57)

f1(z) =f1(r0)
(r0
r

)5
(58)
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Figure 13. Comparison between the method of characteristics and the approximate
analytical solution [Equation (55)] for the pro�le of bubble density function f1(z) as

a function of z with r0 = 2 mm at z=0 m and w∞=0:2k m=s.

where r0 and f1(r0) are the bubble radius and the bubble size distribution at location
z=0 m, respectively.
Figure 14 shows a comparison of the approximate analytical solution given by Equation (58)

and the numerical results. The latter are in very good agreement with the approximate ana-
lytical solution. Note that the variations of the bubble radius r(z) with the vertical location z
for an initial bubble radius r0 = 2mm at z=0m are the same as those when the bubble rise is
dominated by the upward liquid �ow (see Figure 12) and need not be repeated. The bubble
density function f1(r; z) with the vertical location z for an initial bubble radius r0 = 2 mm
at z=0 m is shown in Figure 15. Excellent agreement between the approximate analytical
solution and the numerical solution is evident. Note that in the present case, the total number
of bubbles is not conserved, i.e.

∫∞
0 f1(r) dr �=

∫∞
0 f1(r0) dr0. This is due to the fact that the

gas and liquid momentum equations have been decoupled and it was assumed that the vertical
component of the bubble velocity vector was given by wb=w∞ + wr . Thus, this assumption
implies that the bubble velocity �eld does not satisfy the steady-state continuity equation, i.e.
∇ · vb �= 0. Therefore, the conservation of the total number of bubbles cannot be assured. For
example, in the case of convective transport of solid particles without generation and growth,
the conservation equation [Equation (36)] along the pathlines of the particles may be written
as df1=dt=f1@wr=@z. However, physically it is clear that the bubble density function is trans-
ported unchanged along the particle pathlines and the conservation equation can be written
as df1=dt=0. Therefore, the assumption on the bubble velocity introduces an arti�cial source
in the population balance equation. In order to approximately conserve the total number of
bubbles the bubble velocity vector should satisfy

∇ · vb ≈ 0 (59)
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Figure 14. Comparison between the method of characteristics and the approximate analytical solution
for bubble rise due to buoyancy and growth due to pressure change under one-dimensional steady-state

�ow with �0 = 1 mm, �0 = 0:25 mm, w∞=0:0k m=s.
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Figure 15. Comparison between the method of characteristics and the approximate analytical solu-
tion [Equation (58)] for the pro�le of bubble density function f1 as a function of vertical loca-

tion—one-dimensional steady-state �ow with r0 = 2 mm at z=0 m and w∞=0:0k m=s.
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Since the liquid is treated as incompressible, Equation (59) is satis�ed if @wr=@z� 1. Phys-
ically, this corresponds to situation when the bubble growth rate and liquid velocity do not
vary signi�cantly with position and time. This problem does not occur either in the case of
bubble growth and rise dominated by the liquid �ow since ∇ · vb ≈∇ · v∞ ≈ 0 or for solid
particle rise by buoyancy without growth since then @wr=@z=0. However, for bubble rise
dominated by buoyancy, the simplifying assumption wb=w∞ + wr must be relaxed and the
coupling between the bubble rise and the liquid �ow should be accounted for. To do so,
one could couple the mass and momentum conservation equations for both phases using
the two-�uid model [1, 2]. However, this task is complicated and beyond the scope of this
study.
In conclusion, the results reported in this section validate the numerical computer program.

Previous examples have analytical solutions and could have been solved using the conven-
tional method of characteristics (direct marching method) since they were concerned with
one-dimensional �ow and with bubbles having one internal co-ordinate (their radius r). The
numerical results obtained compare well with the analytical solution and validate the numerical
scheme.

5. CONCLUSION

This paper has described in detail a new numerical method for solving the population bal-
ance equation using the modi�ed method of characteristics. The numerical solution has been
compared with the analytical solution for simple one-dimensional �ow cases when it was
possible. Very good agreement between the numerical and the theoretical solutions has been
obtained con�rming the validity of the numerical procedure and the associated computer
program.
The modi�ed method of characteristics enables one to solve the population balance equation

for complicated problems with relative ease while conventional techniques become rapidly
complex or inadequate. In addition, the method is compatible and can be used in combination
with other numerical schemes (e.g. �nite-volume, �nite elements) that may be used to compute
the external variables. For example, the numerical scheme developed in the present study could
easily be coupled to the three-dimensional two-�uid model to solve for polydispersed bubble
size distribution and could be applied, for example, to two-phase �ow around a naval surface
ship [3].
Finally, since computations for each point on the initial bubble density function f1;0 are

independent from one another, parallel computing is highly recommended to signi�cantly re-
duce the computational time. Moreover, the local particle density function and the conditions
in the surrounding liquid phase (temperature, velocity vector, gas concentration) are interde-
pendent. Accounting for the coupling between the particle density function and the external
�elds is straightforward but time consuming. Indeed, accounting for the coupling requires
iteratively solving for the external �elds and then for the population balance equation until
the convergence criteria are met. However, such a procedure falls beyond the scope of this
study and has been disregarded for the sake of clarity as the authors wanted to emphasize on
the modi�ed method of characteristics. Applications to bubble transport and growth=shrinkage
in three-dimensional �ow will be reported shortly.
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NOMENCLATURE

f1 particle density function
g speci�c gravity
h particle net generation rate per unit volume in the state space
H height of the column
i; j;k unit vectors in the physical space
l number of internal co-ordinates other than the particle radius
m number of variables in external �elds
N total number of particles
pi particle internal co-ordinates other than radius (16i6l)
p pressure
r particle or bubble radius
ṙ time rate of change of particle or bubble radius
R universal gas constant =8:314 J=molK
S particle state vector
t time
u projection of the velocity vector on the x-axis
v projection of the velocity vector on the y-axis
v velocity vector
w projection of the velocity vector on the z-axis
wr vertical upward velocity of the particle relative to the glass melt
x spatial or external co-ordinates
x longitudinal location
y spanwise location
Y local continuous phase variables
z vertical location oriented upward

Greek symbols

	 arbitrary constant with values between 0 and 1
�u; v;w weighting parameters for Laplacian interpolation for the vector variables
�x;y; z weighting parameters for Laplacian interpolation for the scalar variables
� arbitrary small constant for numerical converge criteria
� surface tension
�0 standard deviation of the particle density function
� density
� kinematic viscosity
�0 mean value of the particle density function
�(i)m sectional moment of the density function of order m [Equation (2)]
�m total moment of the bubble density function of order m [Equation (2)]

Subscripts

0 refers to initial values
b refers to the particles or bubbles
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i; j; k indices for the vector nodes of a staggered grid (see Figure 1)
I; J; K indices for the scalar nodes of a staggered grid (see Figure 1)
i index of the internal variable
n index of the particle group
∞ refers to the bulk of the liquid phase

Notation

Ẋ derivative of property X with respect to time
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